
Practical
Programmer
The methodology of the professional and scientific work,

Belgrade, Mathematical Faculty, May 2014

Dejan Vesić, http://www.vesic.org

1

http://www.vesic.org/

or

4 / 5

2

The methodology of the professional and scientific work,

Belgrade, Mathematical Faculty, May 2014

Dejan Vesić, http://www.vesic.org

http://www.vesic.org/

Disclaimer

ÅReal life

ÅHappened many times (experience)

ÅThis is about Software Developmentand
NOTabout Computer Science

ÅHonestly, I do not lie J

ÅI am old, probably outdated, but this is
mandatory lecture ;-)

3

About me
ÅDejan Vesić

ÅSame age as Unix operating system (Bell Labs, 1969)

ÅMore than 22 year in commercial software development

ÅStarted as Clipper and FoxPro, then Oracle programmer, moved
to Web (Asp & Asp.Net), ended on C# side (all rounder)

ÅTarget systems: e-commerce sites of high risk and high traffic
(bookmaking sites) backed by Oracle database

ÅHead of GTECH Belgrade company – more than 190 employees,
of which 80+% are programmers (and 10 in UK)

ÅMember of IEEE Computer Society, ACM and Mensa

ÅMore details on http://www.vesic.org (Serbian) and
http://www.vesic.org/english/

4

http://www.vesic.org/
http://www.vesic.org/english/

GTECH Belgrade
ÅFrom 1999 (BEG Finsoft)

Å190+ Employees: Techies - 150

5

60%

32%

8%
Structure

Technology

Dev. Services

Office & PM

GTECH Belgrade

6

IV
24%

V
1%

VI
10%

VII
62%

VII-2
2%

VIII
1%

EDU

IV

V

VI

VII

VII-2

VIII

GTECH Belgrade

7

ETF
32%

FON
19%

PMF
29%

Mašinski
4%

Rest
16%

Faculty

ETF

FON

PMF

Mašinski

Rest

Agenda

ÅWhy this?

ÅYou - Start of:

ÅIdentity

ÅCommunication

ÅWork

ÅFirst rule of Programming

ÅYou – Best Programmer Ever

ÅUsual Problems

ÅDangerous Programming Errors

ÅCommercial Programming

ÅTeam Work

ÅDocumentation / Comments
8

ÅCV / Resume

ÅCV: General Rules

ÅCV: Bad Examples

ÅCV: References

ÅSelection of Candidates

ÅInterview - Preparation

ÅInterview

ÅInterview – About Money

ÅFinal Decision

ÅWhere Not to Look for Work

ÅReferences

START 9

Start of You: Identity

ÅMail address
ÅProfessional format (name.surname; no nicknames, or misleading

terms)

ÅRespect this medium as phone

ÅThink twice – change is complicated

ÅPrivate / Business one

ÅProtect from spam (http://www.sneakemail.com or similar service)

ÅPresentation / Web page (online CV)

ÅTwitter / Facebook / LinkedIn

ÅBlog

ÅDiscussion groups / forums

ÅBuild your personal brand –create something! *
10

* http://www.squidoo.com/distinguishyourself

http://www.sneakemail.com/
http://www.squidoo.com/distinguishyourself

Start of You: Communication

ÅLearn to communicatewith:

ÅCustomers

ÅClients

ÅUsers

ÅCo-workers

ÅBosses

ÅLearn how to speak in public

ÅLearn how to persuade someone without shouting (guilty as
charged J)

ÅLearn how to explain w/o jargon J

ÅLearn to communicate
11

Start of Work

ÅYou only or in small team

ÅEven pro bono one (no money, but practice and
references)

ÅOpen Source projects (community,
communication, team work, team tools, remote
work; http://sourceforge.net)

ÅFreeLancer, Elance, Guru
ÅReal Work – from requirements ’till support

ÅReal Money – can be decent addition to income

ÅReal Possibilities – can be start of very useful relations 12

http://sourceforge.net/

Start of Work: Guidelines

ÅKeep learning (to avoid Coders syndrome)

ÅLearn a language (new one each 6 – 12
months)

ÅRead code of others – REGULARLY

ÅUse Design Patterns (but understand them!)

ÅDRY (Don’t Repeat Yourself)

ÅAutomate (Scripting languages / build
systems)

ÅKISS (Keep It Simple Stupid J)
13

http://en.wikipedia.org/wiki/KISS_principle

Bugs - First rule of Programming:

ÅOS

ÅCompiler

ÅThird party Library

ÅProgrammer

14

You made bug!

7%

93%

You - Best Programmer Ever

ÅNo one can't control (really) on what you are working

ÅYour boss can't make you to be good programmer

ÅOnly person who can make you great programmeris you

ÅBe Humble:
"The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague."*

ÅBe Vain: make something that looks as good as it works

15
* http://c2.com/cgi/wiki?TheHumbleProgrammer
Edsger Dijkstra, 1972 Turing Award lecture

http://c2.com/cgi/wiki?TheHumbleProgrammer

Daily Work

ÅProblems

ÅNot Critical but important

ÅErrors

ÅCritical

ÅCan cause loss of money (for client) or private
data

ÅMistakes

ÅWrong ways to solve problems

ÅSome out of your hands (team / process),
some not

16

Usual problems (algorithms
/techniques)

ÅExceptions

ÅObject lifecycle (Disposable)

ÅLocking

ÅMultithreading

ÅMessaging

ÅInternationalization / localization (I18N)

ÅDB: Transactions, Locking, Triggers, Data
reconciliation

17

Usual Problems
(desktop)

ÅUser Interface
ÅUsability
Å All with keyboard as well

Å Distribution and order of controls on form

Å Adapt to environment (resolution / DPI / font size)

Å No confirmation for positive actions

Å Very careful selection of defaults

ÅStandardization
Å As much as similar to existing applications on given platform (Office)

ÅEase of Use

ÅZero Tester (your mother? J)

18

http://www.dilbert.com/
Dilbert ©2010, United Feature Syndicate, Inc.All Rights Reserved

http://www.dilbert.com/

Usual Problems
(Serbian ones)

ÅNo responsibility (all excuses)

ÅVery bad code:
ÅIPP (Serbian: APP)

ÅOnly positive branch

ÅNo standard way of error handling

ÅNon-existent documentation

ÅOverdue delivery

ÅOver self-confidence w/o results behind
that 19

2011 CWE/SANS Top 25 Most
Dangerous Programming Errors
(1/3)

ÅInsecure Interaction Between Components

ÅImproper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

ÅImproper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

ÅImproper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

ÅUnrestricted Uploadof File with Dangerous Type

ÅCross-Site Request Forgery (CSRF)

ÅURL Redirection to Untrusted Site ('Open Redirect') 20

Reference: http://cwe.mitre.org/top25/#Brief

http://cwe.mitre.org/top25/#Brief

2011 CWE/SANS Top 25 Most
Dangerous Programming Errors
(2/3)

ÅRisky Resource Management

ÅBuffer Copy without Checking Size of Input ('Classic Buffer Overflow')

ÅImproper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')

ÅDownload of Code Without Integrity Check

ÅInclusion of Functionality from Untrusted Control Sphere

ÅUse of Potentially Dangerous Function

ÅIncorrect Calculation of Buffer Size

ÅUncontrolled Format String

ÅInteger Overflow or Wraparound

21

Reference: http://cwe.mitre.org/top25/#Brief

http://cwe.mitre.org/top25/#Brief

2011 CWE/SANS Top 25 Most
Dangerous Programming Errors
(3/3)

ÅPorous Defenses
ÅMissing Authentication for Critical Function

ÅMissing Authorization

ÅUse of Hard-coded Credentials

ÅMissing Encryption of Sensitive Data

ÅReliance on Untrusted Inputs in a Security Decision

ÅExecution with Unnecessary Privileges

ÅIncorrect Authorization

ÅIncorrect Permission Assignment for Critical Resource

ÅUse of a Broken or Risky Cryptographic Algorithm

ÅImproper Restriction of Excessive Authentication Attempts

ÅUse of a One-Way Hash without a Salt 22

Reference: http://cwe.mitre.org/top25/#Brief

http://cwe.mitre.org/top25/#Brief

35 Classic Mistakes*

People-Related Mistakes Process-Related Mistakes Product-Related Mistakes Technology-Related Mistakes

1. Undermined motivation
2. Weak personnel
3. Uncontrolled problem

employees
4. Heroics
5. Adding people to a late

project
6. Noisy, crowded offices
7. Friction between

developers and customers
8. Unrealistic expectations
9. Lack of effective project

sponsorship
10. Lack of stakeholder buy-in
11. Lack of user input
12. Politics placed over

substance
13. Wishful thinking

14. Overly optimistic schedules
15. Insufficient risk

management
16. Contractor failure
17. Insufficient planning
18. Abandonment of planning

under pressure
19. Wasted time during the

fuzzy front end
20. Shortchanged upstream

activities
21. Inadequate design
22. Shortchanged quality

assurance
23. Insufficient management

controls
24. Premature or too frequent

convergence
25. Omitting necessary tasks

from estimates
26. Planning to catch up later
27. Code-like-hell programming

28. Requirements gold-plating
29. Feature creep
30. Developer gold-plating
31. Push me, pull me

negotiation

32. Silver-bullet syndrome
33. Overestimated savings from

new tools or methods
34. Switching tools in the

middle of a project
35. Lack of automated source-

code control

23

* This material is Copyright © 1996 by Steven C. McConnell. All Rights Reserved.

http://www.stevemcconnell.com/rdenum.htm

Advices *
ÅNever stop learning.

ÅDo Programming ... a LOT!

ÅCommunicationis critical

Å Learn how to WRITE in English (words, not code) – COMMUNICATION:

ÅBlog

ÅActive in community (any community)

ÅSpeak to real people

ÅUnder promise, over deliver.

ÅMake stuff (working ones, for real people)

Å "I was wrong."

Å If it is not tested it doesn't work. If tested, it does not guarantee that it works what it
should do

Å Learn Microeconomics* (soon or later, it goes on money side)

ÅAnd it helps to understand business

24* http://www.removingalldoubt.com/PermaLink.aspx/a32977e2 -cb7d-42ea-9d25-5e539423affd

ȬFatherly Advice to New Programmers Ɂ, Chuck Jazdzewski
** http://www.joelonsoftware.com/articles/StrategyLetterV.html

http://www.removingalldoubt.com/PermaLink.aspx/a32977e2-cb7d-42ea-9d25-5e539423affd
http://www.joelonsoftware.com/articles/StrategyLetterV.html

Recommended Literature
ÅCode Complete 2nd Edition

Steve McConnel

ÅThe Pragmatic Programmer: From Journeyman to Master,
Andrew Hunt, David Thomas

ÅThe Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition,
Frederick P. Brooks

Å24 Deadly Sins of Software Security,
Michael Howard, David LeBlanc, John Viega

ÅRefactoring: Improving the Design of Existing Code
Martin Fowler, John Brant, William Opdyke, Don Roberts

ÅRapid Development: Taming Wild Software Schedules
Steve McConnel

ÅDesign Patterns: Elements of Reusable Object-Oriented Software
Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides

25

http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=sr_1_1?ie=UTF8&s=books&qid=1274214518&sr=1-1
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X/ref=pd_bxgy_b_text_b
http://www.amazon.com/Mythical-Man-Month-Software-Engineering-Anniversary/dp/0201835959/ref=pd_bxgy_b_text_c
http://www.amazon.com/Deadly-Sins-Software-Security-Programming/dp/0071626751/ref=dp_ob_title_bk
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/ref=pd_sim_b_3
http://www.amazon.com/exec/obidos/ISBN=1556159005/
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=sr_1_1?ie=UTF8&s=books&qid=1274379073&sr=8-1

COMMERCIAL PROGRAMMING 26

Desktop Application (example)

ÅPrerequisite check (and install)
ÅOS version + service pack (check for minimal)

ÅMandatory OS components

ÅJava runtime

Å.Net Framework

ÅInstallation
ÅAs well under limited (non-admin) account

ÅRegistration (machine signature)

ÅDesktop Application for something

ÅError Logging
ÅRemote Error Reporting

ÅUpdate
ÅBackward compatibility (keep user data)

ÅCustomer Support

27

Commercial programming

ÅYou don't get paid to program, you get paid to
ship. Be good at your job*

ÅWrite software which will be used by someone (or
that people will actually want to use)**

ÅIt's all about what your code will do for the end
user and not about how you did it

ÅAll Programming is Maintenance Programming

28

* http://www.removingalldoubt.com/PermaLink.aspx/a32977e2 -cb7d-42ea-9d25-
5e539423affd- Fatherly Advice to New Programmers, Chuck Jazdzewski

** http://www.skrenta.com/2007/01/market_engineering.html - How to Ship Code and
Influence People, Rich Skrenta

http://www.removingalldoubt.com/PermaLink.aspx/a32977e2-cb7d-42ea-9d25-5e539423affd
http://www.skrenta.com/2007/01/market_engineering.html

Software System

29

Picture taken from http://blog.prabasiva.com/2008/08/11/software-system-architecture-definition -process/

http://blog.prabasiva.com/2008/08/11/software-system-architecture-definition-process/

Real System

30

Iron Triangle

31

Real Problems J

32
http://www.dilbert.com/
Dilbert ©2010, United Feature Syndicate, Inc.All Rights Reserved

http://www.dilbert.com/

More Real Problems J

33
http://www.dilbert.com/
Dilbert ©2010, United Feature Syndicate, Inc.All Rights Reserved

http://www.dilbert.com/

[Poll] Most important thing to
deliver:

1. Operating system (Linux, Windows, OSX)?

2. Programming ideology (Commercial, Open Source)?

3. Language type (interpreted / compiled)?

4. Framework?

5. Specific language (Java, C, C++, C#, Ruby, Python ...)?

6. Right software development philosophy (Waterfall, XP,
Agile, Scrum)?Right set of software development tools
(Source Code Control System, Build system, Testing
Framework ...)?

34

TEAM!
35

Most important thing to deliver:

Software Factory

36

Development

Front End Middleware Database

Build

QA (Test)
Deploy

How Good Your Team Is?
(technology)

ÅDo you use source code control system?

ÅCan you make a build in one step?

ÅDo you make daily builds?

ÅDo you have a bug database?

ÅDo you fix bugs before writing new code?

ÅDo you have an up-to-date schedule?

ÅDo you have a spec?
37

How Good Your Team Is For You?

ÅDo you respect your
coworkers?

ÅDo you like your
coworkers?

38

Teams – Real Life Problems

ÅPersonality Problems

ÅDistributed Team (communication issues)

ÅSplit Responsibility (unknown owner)

ÅDuplication of code / functionality (missing
design)

ÅKnowledge Sharing (Wiki / Stack Overflow / Bug
Tracking tools)

ÅClear lines of Reporting

ÅNoise 39

Documentation
ÅHigh Level

ÅStructured

ÅExplains details which are higher than code

ÅTargeted toward human, not toward compiler

ÅTypes:
Å Requirements

Å Design

Å Technical (algorithms, interfaces, APIs) - default

Å End User (tutorial, thematic, list or reference doc)

Å Marketing

Å„Prior, clear, and extensive documentation is a key element in creating
software that can survive and adapt“*

ÅDocumentation is COMMUNICATION

40* http://queue.acm.org/detail.cfm?id=1053354- Comments are More
Important than Code

http://queue.acm.org/detail.cfm?id=1053354

Documentation (example)
ÅWhat is it?

ÅWhy is written?

ÅHow it works?

ÅLimitations

ÅBasic Context (where to use it)

ÅInstallation

ÅUpgrade

ÅConfiguration

ÅExamples

ÅTroubleshooting

ÅLicensing / Copyright issues

ÅGood example of documentation:
http://www.urlrewriting.net/160/en/documentation.html

41

http://www.urlrewriting.net/160/en/documentation.html

Comments

ÅWrite extensive comments

ÅWrite comments before code itself

ÅComment even inline code

ÅKeep revision history in header of file

ÅUse auto-generated documentation

42

Writing comments:

ÅIs boring in a first place

ÅTakes time out of coding time

ÅEasy to forget to update when signature changes

Å„When I wrote this, only God and I understood
what I was doing.
Now, God only knows“ *

43

* Karl Weierstrass, mathematician

Examples of Comments J

Å // Magic. Do not touch.

Å /* You are not meant to understand this */

Å // drunk, fix later

Å return 1; # returns 1

Å // I'm sorry.

Å // I am not sure if we need this, but too scared to delete.

Å // I am not responsible of this code.
// They made me write it, against my will.

Å /*
* You may think you know what the following code does.
* But you don't. Trust me.
* Fiddle with it, and you'll spend many a sleepless
* night cursing the moment you thought you'd be clever
* enough to "optimize" the code below.
* Now close this file and go play with something else.
*/

Åhttp://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoad
er.m?spec=svn28&r=11#107

44

http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107

Comments: HOWTO

ÅMAKE CODE SELF EXPLANATORY (so that you do not need to
write comments) by using:
ÅSame coding standard across team

ÅGood variable names

ÅWrite / re-write / refactor code so that speaks for itself

ÅUse comments to communicate ideasto other HUMAN BEINGS*

ÅGood comments -> you have to be good writer

ÅGood comment answer on "Why" (... is this algorithm / idea
used) and not on "What" (... is going on in code) or "How" (.. is
done)

45
* http://www -cs-faculty.stanford.edu/~knuth/lp.html - Literate Programming, Donald
E. Knuth

http://www-cs-faculty.stanford.edu/~knuth/lp.html

Comments: Example

46

http://www.codinghorror.com/blog/2008/07/coding -without -comments.html

r = n / 2;
while (abs(r - (n/r)) > t) {

r = 0.5 * (r + (n/r));
}
System.out.println("r = " + r);

// square root of n with Newton - Raphson
approximation
r = n / 2;
while (abs(r - (n/r)) > t) {

r = 0.5 * (r + (n/r));
}
System.out.println("r = " + r);

Initial : First:

private double SquareRootApproximation(n) {
r = n / 2;
while (abs(r - (n/r)) > t) {

r = 0.5 * (r + (n/r));
}
return r;

}
System.out.println("r = " + SquareRootApproximation(r));

Final:

http://www.codinghorror.com/blog/2008/07/coding-without-comments.html

CV 47

CV, Hiring, Interview –
Disclaimer!

ÅStrictly personal view

ÅBased on previous personal experience

ÅTake this “as is” – without any warranty
that it will work with other employer

ÅI don’twant to say “this is right approach”
but this is my current approach!

48

How to present yourself

ÅHow to write CV / Resume

ÅCover letter (application letter)

ÅExamples J

ÅRecommendation letters

ÅReferences
49

CV != Resume

ÅThere are several differences between a curriculum vitae and a
resume.

ÅA Curriculum Vitae is usually longer (two or more pages) than
resume

ÅWhen asking for a job in Europe, the Middle East, Africa, or Asia,
expect to submit a CV rather than a resume.

ÅSome of personal information on a curriculum vitae that would
never be included on an American resume, such as date of birth,
nationality and place of birth.

ÅUnited States law on what information job applicants can be asked
to provide does not apply outside the country.

50

CV (1)

ÅCurriculum vitae should include:
Å your name

Å contact information

Å education

Å skills

Å experience.

ÅIn addition to the basics, a CV includes:
Å research and teaching experience

Å publications

Å grants and fellowships

Å professional associations and licenses

Å awards

Å and other information relevant to the position you are applying for.

ÅStart by making a list of all your background information, then organize it
into categories. Make sure you include dates on all the publications you
include. 51

CV (2)
(practicalities)
ÅCV

ÅUniversal format (PDF)

ÅIf not PDF, make it as an archive (7-zip, Zip)

ÅCV according to job you are applying (emphasize elements
important for that position)

ÅContent:

ÅNo more than two page

ÅNo grammar or spelling errors

ÅLive references (work – sites and/or proper mail of your contacts)

ÅUP TO DATE!

ÅUP TO DATE!

52

CV – Bad (1)

53

CV – Bad (2)

54

CV – Bad (3: Mail)

55

CV – Bad (3: Attachment)

56

CV -> JOB 57

Checking references and
recommendations
ÅReferences and recommendations are very

important

ÅProfessors / Teachers

ÅFormer Bosses

ÅFormer Colleagues

ÅUsers of your previous products / services

ÅThose gets checked and people get contacted

ÅProgramming community (in Serbia) is small –
make note of that 58

How to apply for work?

ÅPreparation

ÅGet informed about potential employer: web site, products,
structure and public image

ÅBe sure to know for what you are applying to – if there is not
enough info in advertisement, dare to ask for more

ÅApplication (Cover) Letter

ÅFrom your mail address

ÅOn intended address

ÅMake sure that note position you are targeting for

ÅRecommendations

ÅReferences

59

Selection of candidates based
on CV
ÅHow it really works (in practice)?

ÅSometimes just quick overview of CV (few seconds),
sometimes very detailed

ÅCriteria

ÅInternal (from company) recommendations and information

ÅSkills

ÅAbility to Learn (stuff already done)

ÅPersonal (team working, communication, languages…)

ÅExperience

ÅEducation

ÅExternal info
60

Interview - Preparation

ÅGet informed (good!) about potential employer

ÅOfficial sources (web sites, materials, search, financial
records)

ÅUnofficial sources (current or ex-employees etc.)

ÅGet your (minimal) terms under you would accept
position with that company

ÅClear idea for which position you are applying to and
under which conditions

ÅPrepare list of not-so-comfortable list of questions
(for potential employer) as well list of your answers
on similar questions

61

Interview

ÅUsually: Two parts + two circles
ÅPersonality and team member roles

ÅExpert (for area of expertise required for specific role)

ÅSometimes very informal

ÅInterview is bidirectional – be prepared to ask,
not just to be asked

ÅExpect pressure and be prepared to it

ÅBe ready to say „No“

62

Interview – About Money

ÅMoney is very important factor (but not only
one!)

ÅKnow price of your work

ÅDo not be ashamed to ask that price

ÅPrepare list of minimal conditions which you
expect employer to fulfill

ÅBe sure that both sides are fully aware about
agreed conditions! (repeat and verify before
leaving final discussion and making decision)

63

Final decision

ÅHuh… this is hard to explain

ÅWe consider all previously noted elements:

ÅCV

ÅAll conversations

ÅView of other colleagues involved in your
interview

ÅIf we can’t decide… sometimes we follow our
intuition

64

Where to look for work

65

(SugarCRM, Openbravo ERP,
PSTextil ERP)

Where not to look for work

66

Å The leading association in the systems for payment online is looking for:
The senior programmer with at least 5 years of experience. The candidate has to have
a complete and total knowledge of the programs languages which have been
indicated , and has to prove that he can handle these projects alone. The candidate
has to deal with European and American reality for that reasons he should speak and
write fluently english. Experience in the sector of mobile telephones is the most
important advantage.

The program languages (5 years experience)

• HTML, XHTML, DHTML / • XML, XSL, XSLT, DOM.
• CSS1 & 2, Javascript. / • Microsoft ASP (ADO2 & ADO3), ASP.NET
• PHP 3, 4 & 5. / • Sun Java Server Pages (JSP & Servlet).
• MySQL, Microsoft Access & Microsoft SQL Server 2000

The candidate should also have the good knowledge of the things such as -web server,
ftp and mail server, nntp

• Microsoft IIS4 & 5. / • Linux
• Apache v1.XX & v2.XX. / • Apache Tomcat 4.XX

(real job offer, December 2008)

References

ÅSteve McConnell, http://www.stevemcconnell.com/

ÅJoel Spolsky, http://www.joelonsoftware.com/

ÅScott Guthrie, http://weblogs.asp.net/scottgu/

ÅJeff Atwood, http://www.codinghorror.com

ÅDejan Vesić,

Åhttp://www.vesic.org/matfplus/J

ÅTwitter: @Vesic

ÅLinkedIn: http://rs.linkedin.com/in/dejanvesic 67

http://www.stevemcconnell.com/
http://www.joelonsoftware.com/
http://weblogs.asp.net/scottgu/
http://www.codinghorror.com/
http://www.vesic.org/matfplus/
http://twitter.com/#!/Vesic
http://rs.linkedin.com/in/dejanvesic

Q & A

?

68

