
Practical
Programmer
Dejan Vesić, http://www.vesic.org

1

http://www.vesic.org/

or

4 / 5

2

Dejan Vesić, http://www.vesic.org

http://www.vesic.org/

Disclaimer

• Real life

• Happened many times (experience)

• This is about Software Development and
NOT about Computer Science

• Honestly, I do not lie

• I am old, probably outdated, but got this
lecture to give ;-)

3

About me
• Dejan Vesić

• Same age as Unix operating system (Bell Labs, 1969)

• More than 24 year in commercial software development

• Started with Clipper and FoxPro, then Oracle programmer,
moved to Web (Asp & Asp.Net), ended on C# side (all rounder)

• Target systems: e-commerce sites of high risk and high traffic
(bookmaking sites) backed by Oracle database

• Head of IGT Belgrade company – more than 220 employees, of
which 80+% are programmers

• Member of IEEE Computer Society, ACM and Mensa

• More details on http://www.vesic.org (Serbian) and
http://www.vesic.org/english/

4

http://www.vesic.org/
http://www.vesic.org/english/

IGT (ex GTECH) Belgrade
• From 1998 (BEG Finsoft)

• 220+ Employees: Techies – 200+

5

43%

50%

7%
Structure

Technology

Dev. Services

Office & PM

IGT (ex GTECH) Belgrade

6

IV
24%

V
1%

VI
10%

VII
62%

VII-2
2%

VIII
1%

EDU

IV

V

VI

VII

VII-2

VIII

IGT (ex GTECH) Belgrade

7

ETF
32%

FON
19%

PMF
29%

Mašinski
4%

Rest
16%

Faculty

ETF

FON

PMF

Mašinski

Rest

Agenda

• Why this?

• You - Start of:

• Identity

• Communication

• Work

• First rule of Programming

• You – Best Programmer Ever

• Usual Problems

• Dangerous Programming Errors

• Commercial Programming

• Team Work

• Documentation / Comments
8

• Selection of Candidates

• Interview - Preparation

• Interview

• Interview – About Money

• Final Decision

• Where Not to Look for Work

• References

START 9

Start of You: Identity

• Mail address
• Professional format (name.surname; no nicknames, or misleading

terms)

• Respect this medium as phone

• Think twice – change is complicated

• Private / Business one

• Protect from spam (http://www.sneakemail.com or similar service)

• Presentation / Web page (online CV or LinkedIn)

• Twitter / Facebook / LinkedIn / GitHub

• Blog

• Discussion groups / forums

• Build your personal brand – create something! *
10

* http://www.squidoo.com/distinguishyourself

http://www.sneakemail.com/
http://www.squidoo.com/distinguishyourself

Start of You: Communication

• Learn to communicate with:

• Customers

• Clients

• Users

• Co-workers

• Bosses

• Learn how to speak in public

• Learn how to persuade someone without shouting (guilty as
charged)

• Learn how to explain w/o jargon

• Learn to communicate
11

Start of Work

• You only or in small team

• Even pro bono one (no money, but practice and
references)

• Open Source projects (community,
communication, team work, team tools, remote
work; http://sourceforge.net,
https://github.com/)

12

http://sourceforge.net/
https://github.com/

Start of Work: Freelancing

• Real Work – from requirements ’till support

• Real Money – can be decent addition to income

• Real Possibilities – can be start of very useful relations

• Guru
• Not much projects offered

• Better chance for higher bids (moneywise)

• Freelancer
• Vast number of offers and vast amount of junk

• Good for low start (job search, notifications)

• Upwork (Elance + oDesk)
• Low and very low bids

• Still struggling with merger
13

Start of Work: Guidelines

• Keep learning (to avoid Coders syndrome)

• Learn a language (new one each 6 – 12
months)

• Read code of others – REGULARLY

• Use Design Patterns (but understand them!)

• DRY (Don’t Repeat Yourself)

• Automate (Scripting languages / build
systems)

• KISS (Keep It Simple Stupid)
14

http://en.wikipedia.org/wiki/KISS_principle

Bugs - First rule of Programming:

•OS

•Compiler

•Third party Library

•Programmer

15

You made bug!

7%

93%

You - Best Programmer Ever

• No one can't control (really) on what you are working

• Your boss can't make you to be good programmer

• Only person who can make you great programmer is you

• Be Humble:
"The competent programmer is fully aware of the strictly
limited size of his own skull; therefore he approaches the
programming task in full humility, and among other things
he avoids clever tricks like the plague."*

• Be Vain: make something that looks as good as it works

16
* http://c2.com/cgi/wiki?TheHumbleProgrammer
Edsger Dijkstra, 1972 Turing Award lecture

http://c2.com/cgi/wiki?TheHumbleProgrammer

Daily Work

• Problems (ad hoc, more on process side)

• Not Critical but important

• Errors

• Critical

• Can cause loss of money (for client) or private
data

• Mistakes (delayed consequences)

• Wrong ways to solve problems

• Some out of your hands (other teams /
programmers), some not

17

Usual problems (algorithms
/techniques)

• Exceptions

• Object lifecycle (Disposable)

• Locking

• Multithreading

• Messaging

• Internationalization / localization (I18N)

• DB: Transactions, Locking, Triggers, Data
reconciliation

18

Usual Problems
(desktop)

• User Interface
• Usability

• All with keyboard as well

• Distribution and order of controls on form

• Adapt to environment (resolution / DPI / font size)

• No confirmation for positive actions

• Very careful selection of defaults

• Standardization
• As much as similar to existing applications on given platform (Office)

• Ease of Use

• Zero Tester (your mother?)

19

http://www.dilbert.com/
Dilbert ©2010, United Feature Syndicate, Inc. All Rights Reserved

http://www.dilbert.com/

Usual Problems
(Serbian ones)

• No responsibility (all excuses)

• Very bad code:
• IPP (Serbian: APP)

• Only positive branch

• No standard way of error handling

• Non-existent documentation

• Overdue delivery

• Over self-confidence w/o results behind
that 20

2011 CWE/SANS Top 25 Most
Dangerous Programming Errors
(1/3)

• Insecure Interaction Between Components

• Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

• Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

• Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

• Unrestricted Upload of File with Dangerous Type

• Cross-Site Request Forgery (CSRF)

• URL Redirection to Untrusted Site ('Open Redirect') 21

Reference: http://cwe.mitre.org/top25/#Brief

http://cwe.mitre.org/top25/#Brief

2011 CWE/SANS Top 25 Most
Dangerous Programming Errors
(2/3)

• Risky Resource Management

• Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

• Improper Limitation of a Pathname to a Restricted Directory ('Path
Traversal')

• Download of Code Without Integrity Check

• Inclusion of Functionality from Untrusted Control Sphere

• Use of Potentially Dangerous Function

• Incorrect Calculation of Buffer Size

• Uncontrolled Format String

• Integer Overflow or Wraparound

22

Reference: http://cwe.mitre.org/top25/#Brief

http://cwe.mitre.org/top25/#Brief

2011 CWE/SANS Top 25 Most
Dangerous Programming Errors
(3/3)

• Porous Defenses
• Missing Authentication for Critical Function

• Missing Authorization

• Use of Hard-coded Credentials

• Missing Encryption of Sensitive Data

• Reliance on Untrusted Inputs in a Security Decision

• Execution with Unnecessary Privileges

• Incorrect Authorization

• Incorrect Permission Assignment for Critical Resource

• Use of a Broken or Risky Cryptographic Algorithm

• Improper Restriction of Excessive Authentication Attempts

• Use of a One-Way Hash without a Salt 23

Reference: http://cwe.mitre.org/top25/#Brief

http://cwe.mitre.org/top25/#Brief

35 Classic Mistakes*

People-Related Mistakes Process-Related Mistakes Product-Related Mistakes Technology-Related Mistakes

1. Undermined motivation
2. Weak personnel
3. Uncontrolled problem

employees
4. Heroics
5. Adding people to a late

project
6. Noisy, crowded offices
7. Friction between

developers and customers
8. Unrealistic expectations
9. Lack of effective project

sponsorship
10. Lack of stakeholder buy-in
11. Lack of user input
12. Politics placed over

substance
13. Wishful thinking

14. Overly optimistic schedules
15. Insufficient risk

management
16. Contractor failure
17. Insufficient planning
18. Abandonment of planning

under pressure
19. Wasted time during the

fuzzy front end
20. Shortchanged upstream

activities
21. Inadequate design
22. Shortchanged quality

assurance
23. Insufficient management

controls
24. Premature or too frequent

convergence
25. Omitting necessary tasks

from estimates
26. Planning to catch up later
27. Code-like-hell programming

28. Requirements gold-plating
29. Feature creep
30. Developer gold-plating
31. Push me, pull me

negotiation

32. Silver-bullet syndrome
33. Overestimated savings from

new tools or methods
34. Switching tools in the

middle of a project
35. Lack of automated source-

code control

24

* This material is Copyright © 1996 by Steven C. McConnell. All Rights Reserved.

http://www.stevemcconnell.com/rdenum.htm

Advices *
• Never stop learning.

• Do Programming ... a LOT!

• Communication is critical

• Learn how to WRITE in English (words, not code) – COMMUNICATION:

• Blog

• Active in community (any community)

• Speak to real people

• Under promise, over deliver.

• Make stuff (working ones, for real people)

• "I was wrong."

• If it is not tested it doesn't work. If tested, it does not guarantee that it works what it
should do

• Learn Microeconomics* (soon or later, it goes on money side)

• And it helps to understand business

25* http://www.removingalldoubt.com/PermaLink.aspx/a32977e2-cb7d-42ea-9d25-5e539423affd

„Fatherly Advice to New Programmers“, Chuck Jazdzewski
** http://www.joelonsoftware.com/articles/StrategyLetterV.html

http://www.removingalldoubt.com/PermaLink.aspx/a32977e2-cb7d-42ea-9d25-5e539423affd
http://www.joelonsoftware.com/articles/StrategyLetterV.html

Recommended Literature
• Code Complete 2nd Edition

Steve McConnel

• The Pragmatic Programmer: From Journeyman to Master,
Andrew Hunt, David Thomas

• The Mythical Man-Month: Essays on Software Engineering,
Anniversary Edition,
Frederick P. Brooks

• 24 Deadly Sins of Software Security,
Michael Howard, David LeBlanc, John Viega

• Refactoring: Improving the Design of Existing Code
Martin Fowler, John Brant, William Opdyke, Don Roberts

• Rapid Development: Taming Wild Software Schedules
Steve McConnel

• Design Patterns: Elements of Reusable Object-Oriented Software
Erich Gamma, Richard Helm, Ralph Johnson, John M. Vlissides

26

http://www.amazon.com/Code-Complete-Practical-Handbook-Construction/dp/0735619670/ref=sr_1_1?ie=UTF8&s=books&qid=1274214518&sr=1-1
http://www.amazon.com/Pragmatic-Programmer-Journeyman-Master/dp/020161622X/ref=pd_bxgy_b_text_b
http://www.amazon.com/Mythical-Man-Month-Software-Engineering-Anniversary/dp/0201835959/ref=pd_bxgy_b_text_c
http://www.amazon.com/Deadly-Sins-Software-Security-Programming/dp/0071626751/ref=dp_ob_title_bk
http://www.amazon.com/Refactoring-Improving-Design-Existing-Code/dp/0201485672/ref=pd_sim_b_3
http://www.amazon.com/exec/obidos/ISBN=1556159005/
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=sr_1_1?ie=UTF8&s=books&qid=1274379073&sr=8-1

COMMERCIAL PROGRAMMING 27

Desktop Application (example)

• Prerequisite check (and install)
• OS version + service pack (check for minimal)

• Mandatory OS components

• Java runtime or .Net Framework

• Installation
• As well under limited (non-admin) account

• Registration (machine signature)

• Windows Desktop Application for something (Java / .Net)

• Error Logging
• Local / Remote Error Reporting

• Update
• Backward compatibility (keep user data)

• Upgrade in-place (from within application or run agent)

• Customer Support

28

Commercial programming

• You don't get paid to program, you get paid to
ship. Be good at your job*

• Write software which will be used by someone (or
that people will actually want to use)**

• It's all about what your code will do for the end
user and not about how you did it

• All Programming is Maintenance Programming

29

* http://www.removingalldoubt.com/PermaLink.aspx/a32977e2-cb7d-42ea-9d25-
5e539423affd - Fatherly Advice to New Programmers, Chuck Jazdzewski

** http://www.skrenta.com/2007/01/market_engineering.html - How to Ship Code and
Influence People, Rich Skrenta

http://www.removingalldoubt.com/PermaLink.aspx/a32977e2-cb7d-42ea-9d25-5e539423affd
http://www.skrenta.com/2007/01/market_engineering.html

Software System

30

Picture taken from http://blog.prabasiva.com/2008/08/11/software-system-architecture-definition-process/

http://blog.prabasiva.com/2008/08/11/software-system-architecture-definition-process/

Real System

31

Iron Triangle

32

Real Problems

33
http://www.dilbert.com/
Dilbert ©2010, United Feature Syndicate, Inc. All Rights Reserved

http://www.dilbert.com/

More Real Problems

34
http://www.dilbert.com/
Dilbert ©2010, United Feature Syndicate, Inc. All Rights Reserved

http://www.dilbert.com/

[Poll] Most important thing to
deliver:

1. Operating system (Linux, Windows, OSX)?

2. Programming ideology (Commercial, Open Source)?

3. Language type (interpreted / compiled)?

4. Framework?

5. Specific language (Java, C, C++, C#, Ruby, Python ...)?

6. Right software development philosophy (Waterfall, XP,
Agile, Scrum)?Right set of software development tools
(Source Code Control System, Build system, Testing
Framework ...)?

35

TEAM!
36

Most important thing to deliver:

Software Factory

37

Development

Front End Middleware Database

Build

QA (Test)
Deploy

How Good Your Team Is?
(technology)

• Do you use source code control system?

• Can you make a build in one step?

• Do you make daily builds?

• Do you have a bug database?

• Do you fix bugs before writing new code?

• Do you have an up-to-date schedule?

• Do you have a spec?
38

How Good Your Team Is For You?

•Do you respect your co-
workers?

•Do you like your co-
workers?

39

Teams – Real Life Problems

• Personality Problems

• Distributed Team (communication issues)

• Split Responsibility (unknown owner)

• Duplication of code / functionality (missing
design)

• Knowledge Sharing (Wiki / Stack Overflow / Bug
Tracking tools)

• Clear lines of Reporting

• Noise 40

Documentation
• High Level

• Structured

• Explains details which are higher than code

• Targeted toward human, not toward compiler

• Types:
• Requirements

• Design

• Technical (algorithms, interfaces, APIs) - default

• End User (tutorial, thematic, list or reference doc)

• Marketing

• „Prior, clear, and extensive documentation is a key element in creating
software that can survive and adapt“*

• Documentation is COMMUNICATION

41* http://queue.acm.org/detail.cfm?id=1053354 - Comments are More
Important than Code

http://queue.acm.org/detail.cfm?id=1053354

Documentation (example)
• What is it?

• Why is written?

• How it works?

• Limitations

• Basic Context (where to use it)

• Installation

• Upgrade

• Configuration

• Examples

• Troubleshooting

• Licensing / Copyright issues

• Good example of documentation:
http://www.urlrewriting.net/160/en/documentation.html

42

http://www.urlrewriting.net/160/en/documentation.html

Comments

• Write extensive comments

• Write comments before code itself

• Comment even inline code

• Keep revision history in header of file

• Use auto-generated documentation

43

Writing comments:

• Is boring in a first place

• Takes time out of coding time

• Easy to forget to update when signature changes

• „When I wrote this, only God and I understood
what I was doing.
Now, God only knows“ *

44

* Karl Weierstrass, mathematician

Examples of Comments

• // Magic. Do not touch.

• /* You are not meant to understand this */

• // drunk, fix later

• return 1; # returns 1

• // I'm sorry.

• // I am not sure if we need this, but too scared to delete.

• // I am not responsible of this code.
// They made me write it, against my will.

• /*
* You may think you know what the following code does.
* But you don't. Trust me.
* Fiddle with it, and you'll spend many a sleepless
* night cursing the moment you thought you'd be clever
* enough to "optimize" the code below.
* Now close this file and go play with something else.
*/

•

45

http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11#107

Examples of Comments (2)
// At this point, I'd like to take a moment to speak to you about the Adobe PSD format.

// PSD is not a good format. PSD is not even a bad format. Calling it such would be an

// insult to other bad formats, such as PCX or JPEG. No, PSD is an abysmal format. Having

// worked on this code for several weeks now, my hate for PSD has grown to a raging fire

// that burns with the fierce passion of a million suns.

// If there are two different ways of doing something, PSD will do both, in different

// places. It will then make up three more ways no sane human would think of, and do those

// too. PSD makes inconsistency an art form. Why, for instance, did it suddenly decide

// that *these* particular chunks should be aligned to four bytes, and that this alignement

// should *not* be included in the size? Other chunks in other places are either unaligned,

// or aligned with the alignment included in the size. Here, though, it is not included.

// Either one of these three behaviours would be fine. A sane format would pick one. PSD,

// of course, uses all three, and more.

// Trying to get data out of a PSD file is like trying to find something in the attic of

// your eccentric old uncle who died in a freak freshwater shark attack on his 58th

// birthday. That last detail may not be important for the purposes of the simile, but

// at this point I am spending a lot of time imagining amusing fates for the people

// responsible for this Rube Goldberg of a file format.

// Earlier, I tried to get a hold of the latest specs for the PSD file format. To do this,

// I had to apply to them for permission to apply to them to have them consider sending

// me this sacred tome. This would have involved faxing them a copy of some document or

// other, probably signed in blood. I can only imagine that they make this process so

// difficult because they are intensely ashamed of having created this abomination. I

// was naturally not gullible enough to go through with this procedure, but if I had done

// so, I would have printed out every single page of the spec, and set them all on fire.

// Were it within my power, I would gather every single copy of those specs, and launch

// them on a spaceship directly into the sun.

//

// PSD is not my favourite file format.

46

http://blogs.adobe.com/jnack/2009/05/some_thoughts_about_the_psd_format.html

https://web.archive.org/web/20100401043711/http://code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11

http://blogs.adobe.com/jnack/2009/05/some_thoughts_about_the_psd_format.html
https://web.archive.org/web/20100401043711/http:/code.google.com/p/xee/source/browse/trunk/XeePhotoshopLoader.m?spec=svn28&r=11

Comments: HOWTO

• MAKE CODE SELF EXPLANATORY (so that you do not need to
write comments) by using:
• Same coding standard across team

• Good variable names

• Write / re-write / refactor code so that speaks for itself

• Use comments to communicate ideas to other HUMAN BEINGS*

• Good comments -> you have to be good writer

• Good comment answer on "Why" (... is this algorithm / idea
used) and not on "What" (... is going on in code) or "How" (.. is
done)

47
* http://www-cs-faculty.stanford.edu/~knuth/lp.html - Literate Programming, Donald
E. Knuth

http://www-cs-faculty.stanford.edu/~knuth/lp.html

Comments: Example

48

http://www.codinghorror.com/blog/2008/07/coding-without-comments.html

r = n / 2;
while (abs(r - (n/r)) > t) {

r = 0.5 * (r + (n/r));
}
System.out.println("r = " + r);

// square root of n with Newton-Raphson
approximation
r = n / 2;
while (abs(r - (n/r)) > t) {

r = 0.5 * (r + (n/r));
}
System.out.println("r = " + r);

Initial: First:

private double SquareRootApproximation(n) {
r = n / 2;
while (abs(r - (n/r)) > t) {
r = 0.5 * (r + (n/r));

}
return r;

}
System.out.println("r = " + SquareRootApproximation(r));

Final:

http://www.codinghorror.com/blog/2008/07/coding-without-comments.html

CV 49

CV, Hiring, Interview –
Disclaimer!

• Strictly personal view

• Based on previous personal experience

• Take this “as is” – without any warranty
that it will work with other employer

• I don’t want to say “this is right approach”
but this is my current approach!

50

How to present yourself

•How to write CV / Resume

•Cover letter (application letter)

•Examples

•Recommendation letters

•References
51

CV != Resume

• There are several differences between a curriculum vitae and a
resume.

• A Curriculum Vitae is usually longer (two or more pages) than
resume

• When asking for a job in Europe, the Middle East, Africa, or Asia,
expect to submit a CV rather than a resume.

• Some of personal information on a curriculum vitae that would
never be included on an American resume, such as date of birth,
nationality and place of birth.

• United States law on what information job applicants can be asked
to provide does not apply outside the country.

52

CV (1)

• Curriculum vitae should include:
• your name

• contact information

• education

• skills

• experience.

• In addition to the basics, a CV includes:
• research and teaching experience

• publications

• grants and fellowships

• professional associations and licenses

• awards

• and other information relevant to the position you are applying for.

• Start by making a list of all your background information, then organize it
into categories. Make sure you include dates on all the publications you
include. 53

CV (2)
(practicalities)
• CV

• Universal format (PDF)

• If not PDF, make it as an archive (7-zip, Zip)

• CV according to job you are applying (emphasize elements
important for that position)

• Content:

• No more than two page

• No grammar or spelling errors

• Live references (work – sites and/or proper mail of your contacts)

• UP TO DATE!

• UP TO DATE!

54

CV – Bad (1)

55

CV – Bad (2)

56

CV – Bad (3: Mail)

57

CV – Bad (3: Attachment)

58

CV -> JOB 59

Checking references and
recommendations
• References and recommendations are very

important

• Professors / Teachers

• Former Bosses

• Former Colleagues

• Users of your previous products / services

• Those gets checked and people get contacted

• Programming community (in Serbia) is small –
make note of that 60

How to apply for work?

• Preparation

• Get informed about potential employer: web site, products,
structure and public image

• Be sure to know for what you are applying to – if there is not
enough info in advertisement, dare to ask for more

• Application (Cover) Letter

• From your mail address

• On intended address

• Make sure that note position you are targeting for

• Recommendations

• References

61

Selection of candidates based
on CV
• How it really works (in practice)?

• Sometimes just quick overview of CV (few seconds),
sometimes very detailed

• Criteria

• Internal (from company) recommendations and information

• Skills

• Ability to Learn (stuff already done)

• Personal (team working, communication, languages…)

• Experience

• Education

• External info
62

Interview - Preparation

• Get informed (good!) about potential employer

• Official sources (web sites, materials, search, financial
records)

• Unofficial sources (current or ex-employees etc.)

• Get your (minimal) terms under you would accept
position with that company

• Clear idea for which position you are applying to and
under which conditions

• Prepare list of not-so-comfortable list of questions
(for potential employer) as well list of your answers
on similar questions

63

Interview

• Usually: Two parts + two circles
• Personality and team member roles

• Expert (for area of expertise required for specific role)

• Sometimes very informal

• Interview is bidirectional – be prepared to ask,
not just to be asked

• Expect pressure and be prepared to it

• Be ready to say „No“

64

Interview – About Money

• Money is very important factor (but not only
one!)

• Know price of your work

• Do not be ashamed to ask that price

• Prepare list of minimal conditions which you
expect employer to fulfil

• Be sure that both sides are fully aware about
agreed conditions! (repeat and verify before
leaving final discussion and making decision)

65

Final decision

• Huh… this is hard to explain

• We consider all previously noted elements:

• CV

• All conversations

• View of other colleagues involved in your
interview

• If we can’t decide… sometimes we follow our
intuition

66

Where not to look for work

67

• The leading association in the systems for payment online is looking for:
The senior programmer with at least 5 years of experience. The candidate has to have
a complete and total knowledge of the programs languages which have been
indicated, and has to prove that he can handle these projects alone. The candidate
has to deal with European and American reality for that reasons he should speak and
write fluently english. Experience in the sector of mobile telephones is the most
important advantage.

The program languages (5 years experience)

• HTML, XHTML, DHTML / • XML, XSL, XSLT, DOM.
• CSS1 & 2, Javascript. / • Microsoft ASP (ADO2 & ADO3), ASP.NET
• PHP 3, 4 & 5. / • Sun Java Server Pages (JSP & Servlet).
• MySQL, Microsoft Access & Microsoft SQL Server 2000

The candidate should also have the good knowledge of the things such as -web server,
ftp and mail server, nntp

• Microsoft IIS4 & 5. / • Linux
• Apache v1.XX & v2.XX. / • Apache Tomcat 4.XX

(real job offer, December 2008)

Where to look for work

68

References

• Steve McConnell, http://www.stevemcconnell.com/

• Joel Spolsky, http://www.joelonsoftware.com/

• Scott Guthrie, http://weblogs.asp.net/scottgu/

• Jeff Atwood, http://www.codinghorror.com

• Dejan Vesić,

• http://www.vesic.org/matfplus/

• Twitter: @Vesic

• LinkedIn: http://rs.linkedin.com/in/dejanvesic 69

http://www.stevemcconnell.com/
http://www.joelonsoftware.com/
http://weblogs.asp.net/scottgu/
http://www.codinghorror.com/
http://www.vesic.org/matfplus/
http://twitter.com/#!/Vesic
http://rs.linkedin.com/in/dejanvesic

Q & A

70

